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Abstract. Network meta-analysis is a popular way to combine results from several
studies (usually randomized trials) comparing several treatments or interventions.
It has usually been performed in a Bayesian setting, but recently it has become pos-
sible in a frequentist setting using multivariate meta-analysis and meta-regression,
implemented in Stata with mvmeta. I describe a suite of Stata programs for net-
work meta-analysis that perform the necessary data manipulation, fit consistency
and inconsistency models using mvmeta, and produce various graphics.
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1 Introduction

Network meta-analysis, also called multiple treatments meta-analysis or mixed-treatment
comparisons, is a popular way to combine evidence on multiple studies (usually ran-
domized trials) comparing multiple treatments (or other interventions). Its key feature
is the ability to combine direct and indirect evidence; for example, the comparison of
treatments A and B is performed both using studies that directly compare A with B
(direct evidence) and using studies that compare A with C and B with C (indirect evi-
dence). Good general introductions are given by Mills, Thorlund, and Ioannidis (2013)
for the concepts and Salanti et al. (2008) for the statistical methods.

A key issue in network meta-analysis is whether the network is consistent—that is,
whether the direct evidence agrees with the indirect evidence (and, if there are multiple
sources of indirect evidence, whether they agree with each other). Statistical models for
inconsistency have been proposed and can be used to assess consistency (Lu and Ades
2006; Higgins et al. 2012).

Estimation of network meta-analysis models has usually been done in a Bayesian
framework, with fitting in WinBUGS (Lu and Ades 2004). Frequentist estimation is
possible by expressing the consistency and inconsistency models as multivariate random-
effects meta-analysis or meta-regression (White et al. 2012). Graphical methods are
well developed for presenting the results of network meta-analysis (Salanti, Ades, and
Ioannidis 2011), although the individual study data are often not displayed.
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My mvmeta package performs multivariate meta-analysis and meta-regression (White
2009, 2011, 2015). It can therefore be used to perform frequentist estimation of network
meta-analysis models (White et al. 2012). However, difficulties remain in getting the
data into the correct format and in specifying the mvmeta models. Many graphical tools
for displaying the evidence base and the results of network meta-analysis have been
written by Chaimani et al. (2013). Estimation of indirect treatment comparisons along
a single path can also be done using the indirect command (Miladinovic et al. 2014).

In this paper, I introduce a suite of programs for performing network meta-analysis in
Stata. The main aim of these programs is to provide a convenient tool that 1) performs
the necessary data manipulation, allowing different data formats, 2) fits consistency
and inconsistency models using mvmeta, and 3) produces various graphics, including a
display of the individual study data. I also point out some methodological advances.

2 Model for network meta-analysis

I briefly describe the general model here; more details are given by White et al. (2012).
The general model is a model for treatment contrasts (the “contrast-based” model of
Salanti et al. [2008]). It allows for both heterogeneity (variation in the true treatment
effect between studies) and inconsistency (additional variation in the true treatment
effect between designs), where a design is the set of treatments compared in a study.

Consider a network including a total of T treatments: A, B, C, etc. Any treatment
can be chosen as a reference treatment; for simplicity, let’s choose A. Initially, assume
that treatment A is included in every study. Let d = 1, . . . , D index the designs. Let
yAJ
di be the observed contrast of treatment J (J = B, C, . . . ) with treatment A in the
ith study in the dth design. yAJ

di may represent any measure, such as a mean difference,
a standardized mean difference, a log risk-ratio, or a log odds-ratio.

The model for the observed data is

yAJ
di = δAJ + βAJ

di + ωAJ
d + εAJ

di , J = B,C, . . . (1)

where the meaning of each term is described below. Equivalently, in vector notation
with ydi = (yAB

di , yAC
di , . . .)′, the model is

ydi = δ + βdi + ωd + εdi (2)

where δ = (δAB , δAC , . . .)′, βdi = (βAB
di , βAC

di , . . .)′, ωd = (ωAB
d , ωAC

d , . . .)′, and εdi =
(εAB

di , εAC
di , . . .)′ are described below.

Treatment contrasts. In (1) and (2), δAJ represents a treatment contrast (a sum-
mary effect) between J and A. The δAJ (J = B,C, . . .) are regarded as fixed
parameters and are the parameters of primary interest.

Heterogeneity. In (1) and (2), βAJ
di represents heterogeneity in the J–A contrast

between studies within designs. The heterogeneity terms βdi are taken as random
effects
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βdi ∼ N(0,Σ) (3)

as in the conventional random-effects model for meta-analysis. Model (3) without
constraint onΣ (the “unstructured” model) allows each contrast to have a different
heterogeneity variance. The positive definiteness of Σ ensures the “second-order
consistency conditions” of Lu and Ades (2009). However, there are rarely enough
studies to identify the unstructured model, and it is usual to assume that all
treatment contrasts have the same heterogeneity variance τ2. Hence, it is usual
to assume that

Σ = τ2P (4)

where P is a matrix with all diagonal entries equal to 1 and all off-diagonal entries
equal to 0.5 (Higgins and Whitehead 1996).

Inconsistency. In (1) and (2), ωAJ
d represents inconsistency in the J–A contrast

between designs. The inconsistency terms ωAJ
d are taken to be fixed parame-

ters (White et al. 2012), although random inconsistency terms are also possible
(Lumley 2002; Jackson et al. 2014). We can include a maximal set of inconsistency
parameters, which White et al. (2012) term the “design-by-treatment interaction
model”, or a smaller set (Lu and Ades 2006). For the consistency model, we set
ωAJ
d = 0 for all d, J .

Within-study error. In (1) and (2), εAJ
di is a within-study error term. We assume

εdi ∼ N(0,Sdi), where Sdi is assumed to be known.

Two missing-data problems can arise. First, design d may contain the reference
treatment A but not some other treatments. Here we use the likelihood implied by (2)
for the observed subvector of ydi. A harder problem arises when design d excludes A.
Here we still use (2), but either we add a reference treatment arm with a very small
amount of data (the “augmented” approach) or we apply the model only to the contrasts
that are actually estimated in each particular design (the “standard” approach), as
shown in section 3.1.

3 The network commands

3.1 Data formats

I illustrate the data formats with the smoking data that were given by Hasselblad (1998)
and used by Lu and Ades (2006) and White (2011). The raw data comprise the number
of individuals randomized to a treatment (n) and the number of those individuals who
are quitting smoking (d) for each arm of each study. The four treatments are here coded
A, B, C, and D. For brevity, I show only the first four studies. The raw data can be
stored in a long format, as follows:
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. list if study<=4, noobs clean

study treat d n
1 A 9 140
1 C 23 140
1 D 10 138
2 B 11 78
2 C 12 85
2 D 29 170
3 A 79 702
3 B 77 694
4 A 18 671
4 B 21 535

Alternatively, the data can be stored in a wide format:

. list if study<=4, noobs clean

study dA nA dB nB dC nC dD nD
1 9 140 . . 23 140 10 138
2 . . 11 78 12 85 29 170
3 79 702 77 694 . . . .
4 18 671 21 535 . . . .

Note that studies 1 and 2 are three-arm studies and the others are two-arm studies.

The network suite uses three data formats: augmented, standard, and pairs formats.
They are illustrated here with the log odds-ratio as the effect measure.

In the augmented format, all treatments are compared with a reference treatment
(here, treatment A), and studies without the reference treatment (for example, study 2)
have a reference treatment arm created with a small amount of data (White 2011). In
the listing below, arm A has been created in study 2 with 0.001 observations and mean
0.156. Usually, augmentation has a negligible effect on results (see section 4.1), but in
some models, unidentified parameters can be estimated with large standard errors.

. list study _y* _S_B_B - _S_C_D if study<=4, noobs clean

study _y_B _y_C _y_D _S_B_B _S_B_C _S_B_D _S_C_C _S_C_D
1 . 1.05 0.13 . . . 0.17 0.12
2 -0.12 -0.12 0.11 7589.01 7588.90 7588.90 7589.00 7588.90
3 -0.02 . . 0.03 . . . .
4 0.39 . . 0.11 . . . .

. * _S_D_D omitted to save space

In the standard format, each study has its own reference treatment to which the other
treatments are compared. Unlike for the augmented format, the treatment contrast (for
example, variable y 1 in the output below) represents different contrasts in different
studies, and variable contrast 1 specifies the contrast. Three-arm studies also have
values for y 2 representing the contrast specified by contrast 2.

. list study _contrast* _y* _S* if study<=4, noobs clean abbreviate(12)

study _contrast_1 _contrast_2 _y_1 _y_2 _S_1_1 _S_1_2 _S_2_2
1 C - A D - A 1.05 0.13 0.17 0.12 0.23
2 C - B D - B 0.00 0.23 0.20 0.11 0.15
3 B - A -0.02 . 0.03 . .
4 B - A 0.39 . 0.11 . .
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In the above formats, there is one record for each study. In the pairs format, used
by Chaimani et al. (2013), there is one record for each possible contrast in each study,
meaning that two-arm studies have a single record but three-arm studies have three
records. Again, variable contrast labels the contrasts:

. list study _contrast _y _stderr if study<=4, noobs clean abbreviate(12)

study _contrast _y _stderr
1 C - A 1.05 0.41
1 D - A 0.13 0.48
1 D - C -0.92 0.40
2 C - B 0.00 0.45
2 D - B 0.23 0.38
2 D - C 0.22 0.37
3 B - A -0.02 0.17
4 B - A 0.39 0.33

3.2 The network setup command

network setup imports data from a set of studies reporting count data (events, total
number) or quantitative data (mean, standard deviation, total number) for two or more
treatments. The data may be in long format (one record per treatment per study) or in
wide format (one record per study) and may be imported into the augmented, standard,
or pairs format.

After running network setup, the dataset contains various settings that are required
by subsequent network commands; the settings are stored as characteristics and may
be viewed using network query. In particular, each treatment has a code (typically
A, B, C, but numerical codes are possible) and a name (typically a descriptive string).
Subsequent analyses always use the treatment codes, while descriptive and graphical
commands by default use the treatment names.

Syntax

For count data:

network setup eventvar nvar
[
if
] [

in
]
, studyvar(varname)

[
or | rr | rd | hr

zeroadd(#) common options
]

For quantitative data:

network setup meanvar sdvar nvar
[
if
] [

in
]
, studyvar(varname)

[
md | smd

common options
]
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If the data are in wide format, then eventvar nvar or meanvar sdvar nvar are stubs
for variable names and trtvar(varname) is not specified. For example, in the wide
format in section 3.1, network setup d n, studyvar(study) would be appropriate.

If the data are in long format, then eventvar nvar or meanvar sdvar nvar are the
variable names and trtvar(varname) is required. For example, in the long format in
section 3.1, network setup d n, studyvar(study) trtvar(treat) would be appro-
priate.

common options are the following:

trtvar(varname) armvars(drop | keep[(varlist)]) trtlist(string) alpha

numcodes nocodes format(augmented | standard | pairs) genprefix(string)

gensuffix(string) ref(string) augment(#) augmean(#) augsd(#)

augoverall

Options describing the data

studyvar(varname) specifies the study variable. studyvar() is required.

trtvar(varname) specifies the treatment variable (implies the long format).

armvars(drop | keep[ (varlist) ]) is relevant only when the data are in long format and
there are extra arm-level variables in the data. In this case, the easiest option is
armvars(drop) to drop all extra arm-level variables.

Options specifying how treatments are coded

trtlist(string) specifies the list of treatment names to be used, which is useful if you
want to omit some treatments, for example, for a sensitivity analysis. It is also
useful to specify how the treatments will be coded (first treatment will be A, B,
etc.). The default is to use all treatments found in alphabetical order; except that
when trtvar() is numeric, the default is to use all treatments in numerical order.

alpha forces treatments to be coded in alphabetical order. This is the default except
in long format when trtvar() is numeric with value labels.

numcodes codes treatments as numbers 1, 2, 3, . . . or (if more than 9 treatments) 01,
02, 03, . . . . The default is to code treatments as letters A, B, C, . . . or (if more than
26 treatments) AA, AB, AC, . . . .

nocodes uses the current treatment names as treatment codes. Treatment names are
modified only if this is needed to make them valid Stata names. This option becomes
increasingly awkward as treatment names become longer.
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Options for count data

or specifies that the treatment effect be measured by the log odds-ratio (the default).

rr specifies that the treatment effect be measured by the log risk-ratio.

rd specifies that the treatment effect be measured by the risk difference.

hr specifies that the treatment effect be measured by the log hazard-ratio (also called
the log rate-ratio). In this case, nvar must be the total person-time at risk, not the
number of individuals.

zeroadd(#) specifies the number of successes and (except with the hr option) failures
added to all arms of any study that contains a zero cell in any arm. The default is
zeroadd(0.5).

Options for quantitative data

md specifies that the treatment effect be measured by the mean difference (the default).

smd specifies that the treatment effect be measured by the standardized mean differ-
ence, defined as the mean difference divided by the standard deviation, where the
latter is computed pooled across all study arms. The formulas for Hedges’s g in
White and Thomas (2005) are used. These are unbiased estimators and involve cor-
rections for small numbers of degrees of freedom. The covariance between g1 and

g2 is taken as J(ν)2
{

ν
(ν−2)N0

+ g1g2V (ν)
}
, where ν is the degrees of freedom used

to estimate the pooled standard deviation, N0 is the sample size in the common
reference group, and V (ν) and J(ν) are defined in White and Thomas (2005).

Use of the standardized mean difference has problems (Greenland, Schlesselman,
and Criqui 1986). A new alternative is given by Lu, Brazier, and Ades (2013) and
Lu, Kounali, and Ades (2014).

sdpool(on | off) specifies whether the standard deviation is pooled across arms in com-
puting variances. The default, which follows metan, is sdpool(off) with md and
sdpool(on) with smd. For multiarm studies, sdpool(on) pools across all arms.

Options for the format after setting up

format(augmented | standard | pairs) specifies the required format.

genprefix(string) specifies the prefix to be used before the default variable names (for
example, y for treatment contrasts). The default is genprefix( ), where treatment
contrasts are named y*, etc.

gensuffix(string) specifies the suffix to be used after the default variable names. The
default is no suffix.
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Options for augmented format

ref(trtname) specifies the name of the reference treatment.

augment(#) specifies the number of individuals to use when augmenting missing refer-
ence treatment arms. The default is augment(0.001).

augmean(#) specifies the mean outcome to use when augmenting missing reference
treatment arms. The default is for each augmented study to use the weighted average
of its arm-specific means.

augsd(#) applies only for quantitative data and indicates the standard deviation to
use when augmenting missing reference treatment arms. The default is for each
augmented study to use the weighted average of arm-specific standard deviations.

augoverall changes the default behavior for augmean() and augsd() to use the overall
mean and standard deviation across all studies.

3.3 The network map command

network map draws a map of a network; that is, it shows which treatments are directly
compared against which other treatments, and roughly how much information is avail-
able for each treatment and for each treatment comparison. network map works by call-
ing networkplot (Chaimani et al. 2013; Chaimani and Salanti 2015) and has all the fa-
cilities of that command for displaying quantity and quality of evidence through weight-
ing and coloring. network map’s contribution is to offer more options for treatment
placement, although better methods are available (Rücker and Schwarzer Forthcoming).

Syntax

network map
[
if
] [

in
] [

,

circle
[
(#)

] | square[(#)
] | triangular[(#)

] | random[(#)
]
centre

loc(matname) replace improve listloc trtcodes graph options

networkplot options
]

Options

circle
[
(#)

]
specifies that the treatments be placed around a circle. This is the most

commonly used system and the default. The optional argument specifies the number
of locations; the default is the number of treatments.

square
[
(#)

]
specifies that the treatments be placed in a square lattice. The optional

argument specifies the number of rows and columns; the default is the square root
of the number of treatments (rounded up).
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triangular
[
(#)

]
specifies that the treatments be placed in a triangular lattice. The

optional argument specifies the number of rows and the maximum row lengths; the
default is approximately the square root of the number of treatments.

random
[
(#)

]
specifies that the treatments be randomly placed. The optional argument

specifies the number of locations; the default is the number of treatments.

centre, only for use with circle(#), specifies to also place a treatment in the center.

loc(matname) specifies a treatment location matrix. This specifies where the treat-
ments are placed on the map. The matrix should have at least as many rows as
treatments and three columns containing the x coordinate, the y coordinate, and
the clock position for each label. If the matrix does not exist, or if replace is spec-
ified, then a new matrix is created. If loc() is not specified, then a new matrix is
created and stored in network map location.

Note that the rows of matname are taken as the locations of the treatments in alpha-
betical order; row names are ignored. Thus, network map, loc(M) and network

map if useit, loc(M) may place the treatments differently.

replace specifies that a new treatment location matrix be created.

improve requests an iterative procedure to improve the placement of the treatments.
The algorithm swaps pairs of treatments if this reduces the number of line crossings.
With this option, it is useful to increase the number of locations above the default;
for example, in section 4.2 with eight treatments, we use triangular(5).

listloc specifies to print the treatment location matrix.

trtcodes specifies to use treatment codes rather than full treatment names.

graph options are any of the options documented in [G-3] twoway options.

networkplot options are any of the options documented in help networkplot, such as
edgeweight and nodeweight (controlling which edges are thicker than others and
which nodes are larger than others) and edgecolor (allowing edges to be colored
according to evidence quality).

3.4 The network meta command

network meta defines and fits a consistency or inconsistency model. It can handle data
in any of the three network formats. If data are in the augmented or standard formats,
then the models are fit using mvmeta; if data are in the pairs format, then the models
are fit using metareg. mvmeta or metareg must be installed. After fitting the model,
the mvmeta or metareg command used can be recalled by pressing F9. network meta

stores the results for use in network forest and network rank.

For inconsistency models, the design-by-treatment interaction model of Higgins et al.
(2012) is used, unless the luades option is specified (see below). A Wald test for
inconsistency is defined and performed; the command to test for inconsistency can be
recalled by pressing F8.
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Results using the three formats should be almost identical, except that results using
the pairs format are wrong in the presence of multiarm studies; in this case, network
meta issues a warning and stops but can be overruled with the force option.

Syntax

network meta consistency | inconsistency [ if ] [ in ] [ , regress(varlist)

luades
[
(trtlist)

]
force nowarnings mvmeta options

]
Options

regress(varlist) specifies covariates for network meta-regression. Every treatment con-
trast is allowed to depend on the covariate(s) listed. This option is currently only
allowed in the augmented format.

luades
[
(trtlist)

]
, for the inconsistency model, specifies the model of Lu and Ades

(2006) as formalized by White et al. (2012). With only two-arm studies, this is
the same as the design-by-treatment interaction model of White et al. (2012). With
multi-arm studies, the Lu–Ades model is smaller than the design-by-treatment in-
teraction model and depends on the treatment ordering. The optional argument
specifies an ordering of the treatments. This option is only available in the aug-
mented format.

force (not recommended) forces model fitting when network meta detects a difficulty.
This could be a disconnected network; no degrees of freedom for inconsistency when
an inconsistency model is specified; or no degrees of freedom for heterogeneity when
a random-effects model is specified.

nowarnings (not recommended) suppresses warning messages.

mvmeta options are any of the options documented in help mvmeta, such as bscov().
The default is to assume a common heterogeneity variance. This is implemented
using bscov(exch 0.5), a new shorthand for bscov(prop P), where P is the matrix
defined in (4).

3.5 The network rank command

network rank is used to rank treatments. It works only when the augmented format
has been used to fit the model. Details are given in White (2011).

Syntax

network rank min | max [ if ] [ in ] [ , trtcodes mvmeta pbest options
]

Use network rank min if the best treatment is that with the lowest (most negative)
treatment effect, and use network rank max if the best treatment is that with the
highest (most positive) treatment effect.
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Options

trtcodes specifies to use treatment codes rather than full treatment names.

mvmeta pbest options are any of the suboptions available for the pbest() option of
mvmeta, but note that network meta makes sensible default choices for if, in, zero,
and id(), which it would be unwise to change. The following options are likely to
be useful:

all reports probabilities for all ranks. The default is to report only the probabilities
of being the best treatment.

reps(#) sets the number of replicates; larger numbers reduce Monte Carlo error.

seed(#) sets the random-number seed for reproducibility.

bar draws a bar graph of ranks.

line draws a line graph of ranks.

cumulative makes the bar or line graph show cumulative ranks.

predict ranks the true effects in a future study with the same covariates, thus
allowing for heterogeneity as well as parameter uncertainty, as in the calculation
of prediction intervals (Higgins, Thompson, and Spiegelhalter 2009). The default
behavior is instead to rank linear predictors and does not allow for heterogeneity.

meanrank tabulates the mean rank and the SUCRA (Salanti, Ades, and Ioannidis
2011). The SUCRA is the rescaled mean rank: it is 1 when a treatment is certain
to be the best and 0 when a treatment is certain to be the worst.

saving(filename
[
, replace

]
) writes the draws from the posterior distribution (in-

dexed by the identifier and the replication number) to filename. The replace

option allows an existing filename to be overwritten.

clear loads the rank data into memory and specifies the commands needed to re-
produce the table and graph.

mcse adds the Monte Carlo standard errors to the tables.

3.6 The network sidesplit command

network sidesplit fits the node-splitting model of Dias et al. (2010), for whom a
“node” is a treatment contrast, for example, B versus A. I call this “side-splitting”
because treatment contrasts are sides in the network map. To split the side B versus A,
different parameters are used for the contrast of B versus A in studies containing both
A and B (the direct parameter) and in other studies (the indirect parameter). The two
parameters are estimated jointly and reported together with their difference and a test
of whether the true difference is 0.

network sidesplit currently only works with data in the augmented format.
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Multi-arm studies

Multi-arm studies complicate this procedure. Suppose there is a study of A versus B
versus C, and we split the B versus A contrast. The first part of table 1 shows the
parameterization of the side-splitting model as proposed by Dias et al. (2010). With
this model specification, the C versus A contrast is assumed to be the same in “direct”
and “indirect” studies, while the C versus B contrast is allowed to differ. This model
can be conceptualized by regarding B as a different treatment—say, B*—in the direct
studies, where B* is ω units higher than B. But there is no reason why we should not
reverse the roles of A and B; then the side-splitting model regards A, rather than B, as
a different treatment A*, which is ω units lower than A. This gives the parameterization
in the second block of table 1: here the C versus B contrast is assumed to be the same
in direct and indirect designs, while the C versus A contrast is allowed to differ.

Table 1. Parameterizations of side-splitting models

Study B versus A C versus A C versus B

Split B versus A as in Dias et al. (2010)

ABC (direct) δAB + ω δAC δAC − δAB − ω
AC (indirect) δAC

BC (indirect) δAC − δAB

Split A versus B as in Dias et al. (2010)

ABC (direct) δAB + ω δAC + ω δAC − δAB

AC (indirect) δAC

BC (indirect) δAC − δAB

Symmetrical alternative

ABC (direct) δAB + ω δAC + ω/2 δAC − δAB − ω/2
AC (indirect) δAC

BC (indirect) δAC − δAB

I propose a small change that treats A and B symmetrically (last block of table 1).
Here, instead of allocating ω in the direct studies either fully to the C versus A contrast
or fully to the C versus B contrast, it is shared between them. This model can be
conceptualized by regarding both A and B as different treatments in the direct studies,
where B* is ω/2 units higher than B and A* is ω/2 units lower than A. This method
is intermediate between the two alternative ways (splitting B versus A and splitting A
versus B) to implement the method of Dias et al. (2010). The symmetrical method is
the default but can be changed using the nosymmetric option.
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Syntax

network sidesplit trtcode1 trtcode2 | all [ if ] [ in ] [ , show nosymmetric tau

mvmeta options
]

network sidesplit trtcode1 trtcode2 fits a single node-splitting model, while network
sidesplit all fits all appropriate node-splitting models.

Options

show shows the mvmeta calculation(s) and results.

nosymmetric uses the node-splitting model as originally specified by Dias et al. (2010),
rather than the symmetrizing modification described above.

tau specifies to additionally display tau, the standard deviation of the between-studies
heterogeneity.

mvmeta options are any of the options documented in help mvmeta.

3.7 The network forest command

network forest draws a forest plot of network meta-analysis data, extending the idea
of Hawkins et al. (2009). For each contrast for which there is direct evidence (that is,
which is estimated within one or more studies), the forest plot displays the following
results:

1. “Studies”: each study contributing direct evidence, grouped by design (that is,
set of treatments in a study);

2. “Pooled within design”: the pooled treatment effect in each design, estimated by
the model most recently fit using network meta inconsistency; and

3. “Pooled overall”: the overall treatment effect, estimated by the model most re-
cently fit using network meta consistency.

Each of results 1, 2, and 3 is displayed as a point estimate and 95% confidence interval
(or other confidence level determined by set level or the level(#) option). The
marker representing each point estimate has size proportional to the inverse square
of the standard error. Because pooled estimates (results 2 and 3) allow for between-
studies heterogeneity, they may have wider confidence intervals and smaller markers
than study-specific estimates (result 1).
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Syntax

network forest
[
if
] [

in
] [

, consistency(off) inconsistency(off) list

clear colors(string) contrastoptions(string) trtcodes contrastpos(#)

ncolumns(#) columns(string) force diamond group(design | type) eform

graph options
]

Options controlling the summary treatment contrasts

consistency(off) omits the “Pooled overall” summaries from the forest plot.

inconsistency(off) omits the “Pooled within design” summaries from the forest plot.

Options controlling output

list lists the data for the forest plot.

clear clears the current data from memory so that the data for the forest plot can be
loaded into memory. The forestplot command can then be recalled by pressing
F9.

Options controlling graph appearance

colors(string) specifies up to three colors for the “Studies” results, “Pooled within de-
sign” results, and “Pooled overall” results, respectively. The default is colors(blue
green red).

contrastoptions(string) are options for the text identifying the contrasts (for example,
“C vs. B”). Any marker label options are possible, for example,
contrastoptions(mlabsize(large) mlabcolor(red)).
See [G-3] marker label options.

trtcodes specifies use of treatment codes rather than full treatment names.

contrastpos(#) specifies the value of the horizontal axis at which the text identifying
the contrasts (for example, “C vs. B”) is centered.

ncolumns(#) specifies the number of columns for the display. The default is automat-
ically determined so that the number of rows per column is approximately 10 times
the number of columns.

columns(string) specifies how to assign contrasts to columns. columns(xtile) assigns
contrasts to columns in order using xtile and can lead to very unbalanced columns
(that is, much more forest in one column than another). columns(smart) assigns
contrasts to columns to optimize balance without keeping the logical order of the
contrasts (so, for example, column 1 may contain “B vs. A” and “D vs. A” while
column 2 contains “C vs. A”). The default is columns(smart).
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force, only relevant when xlabel() is specified with a numlist, forces confidence inter-
vals to not be truncated within the specified range. By default, confidence intervals
are truncated within the range implied by xlabel(); truncated confidence intervals
are indicated by arrows.

diamond specifies that summaries (“Pooled by design” and “Pooled overall”) be dis-
played as diamonds. This is useful for monochrome printing.

group(design | type) specifies that, within comparisons, the forest plot may be ordered
by design (showing the summary for each design after the studies for that design)
or by type (showing all the studies and then all the summaries). The default is
group(design) if inconsistency results are shown and group(type) otherwise.

eform labels the horizontal axis using the exponential of the values.

graph options are any of the options documented in [G-3] twoway options, such as
xlabel(), xline(0), or legend(pos(3) col(1)). The option most often needed is
msize(markersizestyle) to change the marker sizes; the default is msize(*0.2), so
try, for example, msize(*0.15) or msize(*0.3).

3.8 Utility commands

network import imports a dataset, either of pairwise comparisons using the syntax

network import
[
if
] [

in
]
, studyvar(varname) treat(trtvar1 trtvar2)

effect(varname) stderr(varname)
[
options

]
where treat(trtvar1 trtvar2) specifies that the record compares trtvar2 with trtvar1,
effect(varname) specifies the point estimate for this comparison, and stderr(var-
name) specifies its standard error; or of comparisons with a reference treatment
using the syntax

network import
[
if
] [

in
]
, studyvar(varname) effect(effectstub)

variance(varstub) ref(string)
[
options

]
where variables effectstub * contain the point estimates of the comparisons with
reference, variables varstub * * contain their variances and covariances, and ref()

is the reference treatment used. See help network import for the complete list of
options and their descriptions.

network convert converts between the three formats described. The syntax is

network convert augmented | standard | pairs [ , large(#) ref(trtcode)
]

The options are only relevant when converting to augmented format (see help

convert for details). large(#) specifies the value used for the variance of con-
trasts with the reference treatment in studies without the reference treatment; the
default is large(10000). ref(trtcode) specifies a new reference treatment.

network query displays the current network settings.
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network unset removes the network settings.

network table tabulates network data. Data are reformatted and displayed using
tabdisp. The syntax is

network table
[
if
] [

in
]
,
[
trtcodes tabdisp options

]
where trtcodes specifies to use treatment codes rather than treatment names,
and tabdisp options are any of the options documented in help tabdisp except
cellvar(). For example, cellwidth(#) may be useful to increase the column
width to accommodate treatment names, and stubwidth(#) may be useful to in-
crease the width of the study name column.

network pattern shows which treatments are used in which studies. This is done using
the utility misspattern, which can display general patterns of missing data. The
syntax is

network pattern
[
if
] [

in
] [

, trtcodes misspattern options
]

where trtcodes specifies to use treatment codes rather than treatment names, and
misspattern options are any of the options documented in help misspattern.

3.9 Requirements

Various parts of the network package require mvmeta version 3.1 or greater (White
2009, 2011, 2015), metareg (Harbord and Higgins 2008), and networkplot version 1.2
or greater (Chaimani et al. 2013; Chaimani and Salanti 2015).

4 Examples

4.1 Smoking network

I demonstrate the network package using the smoking data (Lu and Ades 2006), starting
with the data in wide format, with study and trt as identifiers, d containing the number
of events, and n containing the total number. In this version of the data, the treatments
are coded 1–4 with labels “No contact”, “Self help”, “Individual counselling”, and
“Group counselling”. network setup produces a dataset ready for mvmeta, coding the
treatments A–D, using treatment A as reference and using the odds ratio as the measure
of effect.

. use smoking
(Smoking data from Lu & Ades (2006))

. network setup d n, studyvar(study) trtvar(trt)
Treatments used

A (reference): No contact
B: Self help
C: Individual counselling
D: Group counselling
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Measure Log odds ratio

Studies
ID variable: study
Number used: 24
IDs with zero cells: 9 20
- count added to all their cells: .5
IDs with augmented reference arm: 2 21 22 23 24
- observations added: 0.001
- mean in augmented observations: study-specific mean

Network information
Components: 1 (connected)
D.f. for inconsistency: 7
D.f. for heterogeneity: 16

Current data
Data format: augmented
Design variable: _design
Estimate variables: _y*
Variance variables: _S*
Command to list the data: list study _y* _S*, noo sepby(_design)

Next, we tabulate the data, graph the patterns (shown in figure 1), and draw a
network map (shown in figure 2):

. network table

Treatment and Statistic
Group Indivi No con Self h

study d n d n d n d n

1 10 138 23 140 9 140
2 29 170 12 85 11 78
3 79 702 77 694
4 18 671 21 535
5 8 116 19 146
6 363 714 75 731
7 9 205 2 106
8 237 1561 58 549
9 9.5 49 .5 34
10 31 98 3 100
11 26 95 1 31
12 17 77 6 39
13 134 1031 95 1107
14 35 504 15 187
15 73 675 78 584
16 54 888 69 1177
17 107 761 64 642
18 8 90 5 62
19 34 237 20 234
20 9.5 21 .5 21
21 16 43 20 49
22 32 127 7 66
23 20 74 12 76
24 3 26 9 55



968 Network meta-analysis

. network pattern

24 studies

Group counselling

Individual counselling

Self help

No contact

Observed Missing

Figure 1. Network pattern for smoking data

. network map
Graph command stored in F9

No contact

Self help

Individual counselling

Group counselling

Figure 2. Network map for smoking data



I. R. White 969

Note that the treatment names are used when possible. They are abbreviated in the
network table; this can be improved by using the cellwidth() option. The output
shows that each pair of treatments is directly compared but that much of the data
compares treatments A and C.

Next, we fit the consistency model:

. network meta consistency
Command is: mvmeta _y _S, bscovariance(exch 0.5) longparm suppress(uv mm)
> vars(_y_B _y_C _y_D)
Note: using method reml
Note: using variables _y_B _y_C _y_D
Note: 24 observations on 3 variables
Note: variance-covariance matrix is proportional to .5*I(3)+.5*J(3,3,1)

initial: log likelihood = -60.906947
rescale: log likelihood = -60.906947
rescale eq: log likelihood = -60.694018
Iteration 0: log likelihood = -60.694018
Iteration 1: log likelihood = -59.279414
Iteration 2: log likelihood = -59.252153
Iteration 3: log likelihood = -59.252035
Iteration 4: log likelihood = -59.252035

Multivariate meta-analysis
Variance-covariance matrix = proportional .5*I(3)+.5*J(3,3,1)
Method = reml Number of dimensions = 3
Restricted log likelihood = -59.252035 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_y_B
_cons .3984173 .3310951 1.20 0.229 -.2505171 1.047352

_y_C
_cons .7023359 .1991037 3.53 0.000 .3120999 1.092572

_y_D
_cons .8658433 .3762801 2.30 0.021 .1283477 1.603339

Estimated between-studies SDs and correlation matrix:
SD _y_B _y_C _y_D

_y_B .67445374 1 . .
_y_C .67445374 .5 1 .
_y_D .67445374 .5 .5 1
mvmeta command stored as F9

Note that treatment codes, not names, are used. The mvmeta model used is displayed
(and stored in F9) so that the user can modify it if desired. The estimated log odds-
ratio for intervention B compared with A is 0.398, etc. We use these results to find
the probabilities that each treatment is the best (that is, has the highest odds) under
the consistency model and to plot the rankogram (Salanti, Ades, and Ioannidis 2011),
shown in figure 3.
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. network rank max, line cumulative xlabel(1/4) seed(37195)
> tabdispoptions(cellwidth(15))
Command is: mvmeta, noest pbest(max in 1, zero id(study) line cumulative
> xlabel(1/4) seed(37195) tabdispoptions(cellwidth(15)) stripprefix(_y_)
> zeroname(A) rename(A = No contact, B = Self help, C = Individual counselling,
> D = Group counselling))
Option line specified -> option all assumed

Estimated probabilities (%) of each treatment being the best (and other ranks)
- assuming the maximum parameter is the best
- using 1000 draws
- allowing for parameter uncertainty

study and Treatment
Rank No contact Self help Individual coun Group counselli

1
Best 0.0 6.0 31.4 62.6
2nd 0.4 18.7 54.9 26.0
3rd 13.6 62.2 13.7 10.5

Worst 86.0 13.1 0.0 0.9

mvmeta command is stored in F9
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Figure 3. Rankogram for smoking data

The table and graph show, for example, that group counselling has a 62.6% proba-
bility of being the best treatment and about a 90% probability of being one of the two
best treatments.
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We now fit the inconsistency model:

. network meta inconsistency
Command is: mvmeta _y _S, bscovariance(exch 0.5) longparm suppress(uv mm)
> eq(_y_C: des_ACD des_BC des_BCD, _y_D: des_AD des_BCD des_BD des_CD)
> vars(_y_B _y_C _y_D)
Note: using method reml
Note: regressing _y_B on (nothing)
Note: regressing _y_C on des_ACD des_BC des_BCD
Note: regressing _y_D on des_AD des_BCD des_BD des_CD
Note: 24 observations on 3 variables
Note: variance-covariance matrix is proportional to .5*I(3)+.5*J(3,3,1)

initial: log likelihood = -50.816796
rescale: log likelihood = -50.816796
rescale eq: log likelihood = -50.816796
Iteration 0: log likelihood = -50.816796
Iteration 1: log likelihood = -50.089407
Iteration 2: log likelihood = -50.088702
Iteration 3: log likelihood = -50.088702

Multivariate meta-analysis
Variance-covariance matrix = proportional .5*I(3)+.5*J(3,3,1)
Method = reml Number of dimensions = 3
Restricted log likelihood = -50.088702 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_y_B
_cons .3299969 .4675425 0.71 0.480 -.5863696 1.246363

_y_C
des_ACD .3468324 .8821287 0.39 0.694 -1.382108 2.075773
des_BC -.5261706 1.004485 -0.52 0.600 -2.494926 1.442584
des_BCD -.3732418 1.013837 -0.37 0.713 -2.360325 1.613841

_cons .7044606 .2347922 3.00 0.003 .2442763 1.164645

_y_D
des_AD 3.393989 1.889991 1.80 0.073 -.3103244 7.098303
des_BCD .4267799 1.3027 0.33 0.743 -2.126466 2.980026
des_BD 1.244879 1.323322 0.94 0.347 -1.348784 3.838543
des_CD .8178211 1.123139 0.73 0.467 -1.383491 3.019133
_cons .1285276 .8825026 0.15 0.884 -1.601146 1.858201

Estimated between-studies SDs and correlation matrix:
SD _y_B _y_C _y_D

_y_B .74313772 1 . .
_y_C .74313772 .5 1 .
_y_D .74313772 .5 .5 1

Testing for inconsistency:
( 1) [_y_C]des_ACD = 0
( 2) [_y_D]des_AD = 0
( 3) [_y_C]des_BC = 0
( 4) [_y_C]des_BCD = 0
( 5) [_y_D]des_BCD = 0
( 6) [_y_D]des_BD = 0
( 7) [_y_D]des_CD = 0

chi2( 7) = 5.11
Prob > chi2 = 0.6464

mvmeta command stored as F9; test command stored as F8
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The global test for inconsistency gives a p-value of 0.65, giving no evidence of inconsis-
tency.

To see that the results are the same using the standard format, we convert the format
and repeat the consistency analysis:

. network convert standard
Converting augmented to standard ...

. network meta consistency
Command is: mvmeta _y _S, bscovariance(exch 0.5) commonparm noconstant
> suppress(uv mm) eq(_y_1: _trtdiff1_B _trtdiff1_C _trtdiff1_D, _y_2:
> _trtdiff2_B _trtdiff2_C _trtdiff2_D) vars(_y_1 _y_2)
Note: using method reml
Note: regressing _y_1 on _trtdiff1_B _trtdiff1_C _trtdiff1_D
Note: regressing _y_2 on _trtdiff2_B _trtdiff2_C _trtdiff2_D
Note: 24 observations on 2 variables
Note: variance-covariance matrix is proportional to .5*I(2)+.5*J(2,2,1)

initial: log likelihood = -34.471727
rescale: log likelihood = -34.471727
rescale eq: log likelihood = -34.259312
Iteration 0: log likelihood = -34.259312
Iteration 1: log likelihood = -32.844434
Iteration 2: log likelihood = -32.817174
Iteration 3: log likelihood = -32.817057
Iteration 4: log likelihood = -32.817057

Multivariate meta-analysis
Variance-covariance matrix = proportional .5*I(2)+.5*J(2,2,1)
Method = reml Number of dimensions = 2
Restricted log likelihood = -32.817057 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_y_1
_trtdiff1_B .3984487 .3311044 1.20 0.229 -.250504 1.047401
_trtdiff1_C .7023556 .1991095 3.53 0.000 .3121081 1.092603
_trtdiff1_D .8658902 .3762928 2.30 0.021 .1283699 1.603411

The above coefficients also apply to the following equations:
_y_2: _trtdiff2_B _trtdiff2_C _trtdiff2_D

Estimated between-studies SDs and correlation matrix:
SD _y_1 _y_2

_y_1 .67446638 1 .
_y_2 .67446638 .5 1
mvmeta command stored as F9

Although the parameterization is different, the numerical results are almost identical.
Differences arise in the fifth or sixth decimal place because of the tiny approximation
introduced by augmentation.
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Having fit both consistency and inconsistency models, we produce a forest plot
(shown in figure 4):

. network forest, msize(*0.15) diamond name(smoke_forest, replace) eform
> xlabel(0.1 1 10 100)
group(design) assumed

Self help vs. No contact

Individual counselling vs. No contact

Individual counselling vs. Self help

Group counselling vs. No contact

Group counselling vs. Self help

Group counselling vs. Individual counselling

 
 
 
 

Study 3
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Study 5
All A B

All studies
 
 
 
 

Study 6
Study 7
Study 8
Study 9

Study 10
Study 11
Study 12
Study 13
Study 14
Study 15
Study 16
Study 17
Study 18
Study 19

All A C
 

Study 1
All A C D

 
All studies

 
 
 
 

Study 21
All B C

 
Study 2

All B C D
 

All studies

 
 
 
 

Study 1
All A C D

 
Study 20

All A D
 

All studies
 
 
 
 

Study 2
All B C D

 
Study 22

All B D
 

All studies
 
 
 
 

Study 1
All A C D

 
Study 2

All B C D
 

Study 23
Study 24

All C D
 

All studies
 
 
 
 
 
 
 

.1 1 10 100 .1 1 10 100

Studies Pooled within design Pooled overall

Odds ratio

Test of consistency: chi2(7)=5.11, P=0.646

Figure 4. Forest plot for smoking network

The forest plot shows the individual study results, grouped by treatment contrast
and design. It is clear that there is substantial heterogeneity between studies of C
(“Individual counselling”) versus A (“No contact”). Pooled results within design (from
the inconsistency model) are shown as diamonds. Where there is only one study of a
given design—for example, study 2 is the only “B C D” study at the bottom left—the
point estimate pooled within design is the same as the single study’s result, but the
confidence interval is wider because the heterogeneity is assumed to be the same as in
the other studies (here, estimated primarily from the “A C” studies). Overall pooled
results are also shown as diamonds. The similarity of the “Pooled within design” and
“Pooled overall” results again supports the consistency model.
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We next explore inconsistency by side-splitting. We first split the side A–C, using
the original method of Dias et al. (2010) for which the results depend on whether we
split A–C or C–A (because A and C are contained in a three-arm study),

. network sidesplit A C, nosymmetric

Coef. Std. Err. z P>|z| [95% Conf. Interval]

direct .7482566 .2088504 3.58 0.000 .3389174 1.157596
indirect .317684 .5560699 0.57 0.568 -.7721931 1.407561

difference .4305726 .5769152 0.75 0.455 -.7001604 1.561306

. network sidesplit C A, nosymmetric

Coef. Std. Err. z P>|z| [95% Conf. Interval]

direct -.6840217 .21289 -3.21 0.001 -1.101278 -.2667649
indirect -.937374 .636093 -1.47 0.141 -2.184093 .3093454

difference .2533524 .6619598 0.38 0.702 -1.044065 1.55077

and using the new method for which the results are the same (apart from a change of
sign) for splitting A–C or C–A:

. network sidesplit A C

Coef. Std. Err. z P>|z| [95% Conf. Interval]

direct .7215198 .2132355 3.38 0.001 .303586 1.139454
indirect .5736366 .6371481 0.90 0.368 -.6751508 1.822424

difference .1478833 .6675922 0.22 0.825 -1.160573 1.45634

. network sidesplit C A

Coef. Std. Err. z P>|z| [95% Conf. Interval]

direct -.7215198 .2132355 -3.38 0.001 -1.139454 -.3035859
indirect -.5736366 .6371482 -0.90 0.368 -1.822424 .6751509

difference -.1478833 .6675923 -0.22 0.825 -1.45634 1.160574

Finally, we split each node in turn—this can be slow because each split involves
fitting a model:

. network sidesplit all

Side Direct Indirect Difference
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. P>|z|

A B .3266968 .4431874 .5101193 .5274799 -.1834225 .6881715 0.790
A C .7215198 .2132355 .5736366 .6371481 .1478833 .6675922 0.825
A D .8201395 .7576194 .8893868 .4420005 -.0692474 .8743754 0.937
B C -.0756829 .5752542 .5163241 .4300301 -.592007 .7180019 0.410
B D .6231378 .5693373 .2974687 .604145 .3256691 .8305243 0.695
C D -.075668 .411104 .8722707 .70663 -.9479387 .8161917 0.245

These results again support consistency.
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4.2 Thrombolytics network

The thrombolytics network (Lu and Ades 2006) includes eight treatments. It is more
typical than the smoking network in that many possible pairs of treatments are not di-
rectly compared. We use these data, with just treatment codes, to demonstrate network
map. We first set up the data:

. use thromb, clear
(Thrombolytics network meta-analysis from Lu & Ades (2006), corrected)

. network setup r n, studyvar(study) trtvar(treat)
Treatments used

A (reference): A
B: B
C: C
D: D
E: E
F: F
G: G
H: H

Measure Log odds ratio

Studies
ID variable: study
Number used: 28
IDs with zero cells: [none]
IDs with augmented reference arm: 17 18 19 20 21 22 23 24 25 26 27 28
- observations added: 0.001
- mean in augmented observations: study-specific mean

Network information
Components: 1 (connected)
D.f. for inconsistency: 8
D.f. for heterogeneity: 15

Current data
Data format: augmented
Design variable: _design
Estimate variables: _y*
Variance variables: _S*
Command to list the data: list study _y* _S*, noo sepby(_design)
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The network map (figure 5) follows a standard format, but there are many line
crossings that obscure the structure.

. network map
Graph command stored in F9

A

B

C

D

E

F

G

H

Figure 5. Network map for thrombolytics data: Default
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We try improving the graph, using the improve option to repeatedly switch treat-
ment locations to minimize the number of line crossings. We first base the map on the
circle (see figure 6):

. network map, circle improve
Improving locations ...
loop 1 score 24= 21 19 17 16=.. 11== 7==....=... 4....=.=..... 3=......=.=
> ........==......==
loop 2 score 3=........=..=.....=........=.=...=..=......=.=........==......==
Stopping because loop 2 gave no improvement
Evaluating optimal locations ...

1-3 and 2-8: score 1
1-6 and 2-4: score 1
1-7 and 2-8: score 1

Graph command stored in F9

AB

C

DE

F

G
H

Figure 6. Network map for thrombolytics data: Circle with improve option

The numbers in the output count the line crossings (with co-incident lines scored as
10 crossings); “=” indicates a switch of treatment locations that doesn’t improve the
score (and is done); and “.” indicates a switch of treatment locations that would make
the score worse (and so is not done). The final output shows, for example, that lines
1–3 (A–C) and 2–8 (B–H) cross.
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To get a map with no crossings, we next use the improve option starting with a
triangular grid of side 5, which has 23 locations and hence 15 gaps (see figure 7):

. network map, triangular(5) improve
Improving locations ...
loop 1 score 117==. 106 103 58 55== 53.= 42....== 41... 38=............=....=...
> 36.= 35.... 28.. 17............. 15=.=... 5.========.===....=....= 4.==..=====
> .....===.....=.==.====.........==.........=..=........==.........=..=....=....
> .===============..=.....===============. 3..=...===============....=...=======
> =========.=...=.===============...==...===============....=== 1===============
> ....==.================....==..===============....==..===============......=.=
> ==============......=.===============....=...===============....=...==========
> =====.....=..===============
loop 2 score 1=........=.=....=.......=..................=....=......=.....==.=.
> .==...=== 0
Stopping after achieving score of 0
Evaluating optimal locations ...
Graph command stored in F9

A

B

C

D

E F

G

H

Figure 7. Network map for thrombolytics data: 5 × 5 triangular grid with improve

option
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That’s good—there are no line crossings. Finally, we tidy the map by retrieving
the treatment locations from matrix network map location, moving treatments C, D,
and E, and moving the label for treatment F (see figure 8):

. matrix loc2 = _network_map_location[1..8,.]

. * move C left to level of A

. matrix loc2[3,1]=loc2[1,1]

. * move D up to level of A

. matrix loc2[4,2]=loc2[1,2]

. * move E up to level of B

. matrix loc2[5,2]=loc2[2,2]

. * move F label to 10 o´clock

. matrix loc2[6,3]=10

. network map, loc(loc2)
Graph command stored in F9

A

B

C

D

E

F

G

H

Figure 8. Network map for thrombolytics data: Figure 7 after moving treatments C,
D, and E and the label for treatment F

Finally, we fit the consistency and inconsistency models (results not shown) and
draw a forest plot (shown in figure 9). The most striking feature of this plot is that the
two H versus B studies disagree strongly with the results of the consistency model, even
though the overall test of inconsistency has a p-value of 0.38. A similar result is found
using network sidesplit all.
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Test of consistency: chi2(8)=8.61, P=0.377

Figure 9. Forest plot for thrombolytics data

4.3 Quantitative data

I finally show how quantitative data may be used, using fictitious data on three treat-
ments in long format:

. list, noobs clean

study trt sbpmean sbpsd count
1 P 150 15 100
1 A 160 14 100
1 B 162 16 100
2 P 170 22 73
2 A 175 20 77
3 A 160 19 25
3 B 154 19 25
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Because the treatments are already encoded (P meaning placebo), we set them up
using the nocodes option, and we set placebo as the reference:

. network setup sbpmean sbpsd count, studyvar(study) trtvar(trt) nocodes ref(P)
Treatments used

A: A
B: B
P (reference): P

Measure Mean difference
Standard deviation pooling: off

Studies
ID variable: study
Number used: 3
IDs with augmented reference arm: 3
- observations added: 0.001
- mean in augmented observations: study-specific mean
- SD in augmented observations: study-specific within-arms SD

Network information
Components: 1 (connected)
D.f. for inconsistency: 2
D.f. for heterogeneity: 0

Current data
Data format: augmented
Design variable: _design
Estimate variables: _y*
Variance variables: _S*
Command to list the data: list study _y* _S*, noo sepby(_design)

The data can now be tabulated and listed:

. network table

Treatment and Statistic
A B P

study sbpmean sbpsd count sbpmean sbpsd count sbpmean sbpsd count

1 160 14 100 162 16 100 150 15 100
2 175 20 77 170 22 73
3 160 19 25 154 19 25

. list study _*

study _design _y_A _S_A_A _y_B _S_B_B _S_A_B

1. 1 A B P 10 4.21 12 4.81 2.25
2. 2 A P 5 11.824942 . . .
3. 3 A B 3 361014.42 -3 361014.42 360999.98

Further analyses would proceed as above, except that there are no degrees of freedom
for heterogeneity, so a random-effects inconsistency model cannot be fit.
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5 Discussion

The main limitation of the analysis methods presented here is that they are two-stage
methods that rely on a normal approximation to the distribution of the estimated
study-specific treatment effects. This approximation can be problematic with count
data, especially with small counts. The main alternative is a Bayesian analysis that
avoids this approximation. Comparisons of frequentist and Bayesian results suggest
that frequentist results can be somewhat biased toward the null.

A second limitation of the analysis methods presented here is that the models are
restricted to those that can be fit with mvmeta, whereas Bayesian models can allow for
further levels of hierarchical modeling.

The key advantage of the methods presented here is their relative simplicity and
speed, and hence the opportunity for the user to use a variety of analyses; for exam-
ple, it would be easy to repeat the analyses omitting one or more studies. The data
formats provided are sufficiently flexible to interface with other user-written software,
and in particular, with the routines of Chaimani et al. (2013), which are available from
http://www.mtm.uoi.gr.

The network suite is work in progress, and I would be delighted to hear suggestions
for improvements and new features, or even for others to write new subcommands.
Possible future features include the ability to create WinBUGS code and fit the model
in a Bayesian way, a feature already available in R (van Valkenhoef et al. 2012b,a); the
random inconsistency model (Jackson et al. 2014); and methods to explore inconsistency
(White et al. 2012).
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